Preprocessing and comparative analysis of dermatoscopic images of benign and malignant skin lesions using Python tools
DOI:
https://doi.org/10.52611/confluencia.2025.1368Keywords:
Skin cancer, Medical imaging, Diagnostic imaging, Machine learningAbstract
Introduction: Early diagnosis of skin cancer requires high-quality databases. Advances in AI improve accuracy, but challenges remain in the storage, representation, and objective evaluation of dermatological images. Objective: To explore the use of quantitative digital image processing and analysis methodologies to categorize skin lesions, evaluating the suitability of the database for use in training models. Methodology: Exploratory and descriptive research in which dermatoscopic images of benign and malignant lesions were collected and processed, using segmentation techniques, feature extraction, and statistical analysis through the development of executable code in Python and specialized libraries. Result: Differences between images of benign and malignant lesions were evident. Benign lesions had higher and more homogeneous values in the red, green, and blue color channels, as well as higher average brightness and lower contrast. Malignant lesions show greater color variability, lower brightness, higher contrast, and a more complex texture. Discussion: The results are consistent with findings previously described in the literature, where significant differences in contrast between malignant and benign lesions and greater color heterogeneity in malignant images were observed. Conclusion: The results obtained reinforce the importance of quantitative and automated analysis in the evaluation of medical images, providing objectivity and reproducibility to the analysis of complex data. The identification of differentiating patterns in color and texture allows the identification of lesion types.
Downloads
References
Brochez L, Volkmer B, Hoorens I, Garbe C, Röcken M, Schüz J, et al. Skin cancer in Europe today and challenges for tomorrow. J Eur Acad Dermatol Venereol [Internet]. 2025 [citado el 19 de abril 2025];39(2):272-7. Disponible en: https://doi.org/10.1111/jdv.20368
Krefting F, Moelleken M, Hölsken S, Placke JM, Eisenburger RT, Albrecht LJ, et al. Comparison of visual diagnostic accuracy of dermatologists practicing in Germany in patients with light skin and skin of color. Sci Rep [Internet]. 2024 [citado el 19 de abril 2025];14(1):8740. Disponible en: https://doi.org/10.1038/s41598-024-59426-4
Li Z, Koban KC, Schenck TL, Giunta RE, Li Q, Sun Y. Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. J Clin Med [Internet]. 2022 [citado el 19 de abril 2025];11(22):6826. Disponible en: https://doi.org/10.3390/jcm11226826
Ray A, Sarkar S, Schwenker F, Sarkar R. Decoding skin cancer classification: perspectives, insights, and advances through researchers' lens. Sci Rep [Internet]. 2024 [citado el 19 de abril 2025];14(1):30542. Disponible en: https://doi.org/10.1038/s41598-024-81961-3
Stafford H, Buell J, Chiang E, Ramesh U, Migden M, Nagarajan P, et al. Non-Melanoma Skin Cancer Detection in the Age of Advanced Technology: A Review. Cancers (Basel) [Internet]. 2023 [citado el 19 de abril 2025];15(12):3094. Disponible en: https://doi.org/10.3390/cancers15123094
Giavina-Bianchi M, de Sousa RM, Paciello VZA, Vitor WG, Okita AL, Prôa R, et al. Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting. PLoS One [Internet]. 2021 [citado el 19 de abril 2025];16(9):e0257006. Disponible en: https://doi.org/10.1371/journal.pone.0257006
Ba W, Wu H, Chen WW, Wang SH, Zhang ZY, Wei XJ, et al. Convolutional neural network assistance significantly improves dermatologists' diagnosis of cutaneous tumours using clinical images. Eur J Cancer [Internet]. 2022 [citado el 19 de abril 2025];169:156-65. Disponible en: https://doi.org/10.1016/j.ejca.2022.04.015
Khan S, Khan A. SkinViT: A transformer based method for Melanoma and Nonmelanoma classification. PLoS One [Internet]. 2023 [citado el 19 de abril 2025];18(12):e0295151. Disponible en: https://doi.org/10.1371/journal.pone.0295151
Chen L, Li J, Zou Y, Wang T. ETU-Net: edge enhancement-guided U-Net with transformer for skin lesion segmentation. Phys Med Biol [Internet]. 2023 [citado el 19 de abril 2025];69(1). Disponible en: https://doi.org/10.1088/1361-6560/ad13d2
Niño-Rondón CV, Forero-Vargas MG, Castro-Casadiego SA. Transformaciones geométricas vs Inducción de ruido: Comparación de técnicas de aumentado de datos para análisis de imágenes dermoscópicas. Respuestas [Internet]. 2023 [citado el 19 de abril 2025];28(3):48-57. Disponible en: https://doi.org/10.22463/0122820X.4276
Mohammed S, Budach L, Feuerpfeil M, Ihde N, Nathansen A, Noack N, et al. The Effects of Data Quality on Machine Learning Performance on Tabular Data [Internet]. USA: arXiv:2207.14529 Cornell University; 2022 [citado el 19 de abril 2025]. Disponible en: https://doi.org/10.48550/arXiv.2207.14529
Fanconi C. Skin Cancer: Malignant vs Benign. Processed Skin Cancer pictures of the ISIC Archive [Internet]. 2019 [citado el 19 de abril 2025]. Disponible en: https://www.kaggle.com/fanconic/skin-cancer-malignant-vs-benign
Sabir R, Mehmood T. Classification of melanoma skin Cancer based on Image Data Set using different neural networks. Sci Rep [Internet]. 2024 [citado el 19 de abril 2025];14(1):29704. Disponible en: https://doi.org/10.1038/s41598-024-75143-4
DEbicka-Kumela M, Romanowska-Dixon B, Karska-Basta I, Kowal J, Markiewicz A. The Evaluation of the Malignant Characteristics of Conjunctival Lesions Based on the Dermatoscopic Algorithm. Anticancer Res [Internet]. 2021 [citado el 19 de abril 2025];41(2):895-903. Disponible en: https://doi.org/10.21873/anticanres.14842
Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks [Internet]. 2018 [citado el 19 de abril 2025];106:249-59. Disponible en: https://doi.org/10.48550/arXiv.2207.14529
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Confluencia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



