Bio-Agglomerated Panels from Forest Waste The Case of Eucalyptus Globulus Labill
Main Article Content
Abstract
This research describes the process of designing, developing, and validating bio-agglomerated panels made from capsules of Eucalyptus globulus Labill, an invasive species with a high environmental impact in Chile. The study is primarily positioned as applied research aimed at the development and technical validation of a biomaterial, carried out in the context of a thesis project guided over the course of an academic year and developed through research and close collaboration between students and teachers. Its purpose was to explore the technical and sustainable feasibility of transforming forest waste into a functional material, using design methodologies focused on material experimentation and the circular economy. The research was structured according to the Material Driven Design (MDD) and Territory-Based Biomaterials (BBT) approaches, integrating stages of territorial diagnosis, characterization of the raw material, formulation and manufacture of mixtures, application of physical-mechanical tests, and analysis of results. The panels obtained reached an average density of 0.82 g/cm³, water absorption of 6.3%, and tensile strength of 11.4 MPa, demonstrating structural stability and low permeability. The technical and material results obtained place the bio-agglomerate within the range of low-density lignocellulosic materials with potential applications in interior design. Beyond the technical results, the work recognizes the educational context in which the research was developed, without this dimension constituting an object of study in itself, demonstrating that undergraduate academic practice can contribute to the generation of applied knowledge in sustainable design.
Article Details
References
Almulla, M. A. (2020). The Effectiveness of the Project-Based Learning (PBL) Approach as a Way to Engage Students in Learning. Sage Open, 10(3). https://doi.org/10.1177/2158244020938702
Amaya Sánchez, P. A., & Sandoval Jaime, J. J. (2020). Evaluación de la obtención y uso del aceite esencial de eucalipto (eucalyptus globulus) como fungicida.
Bak-Andersen, M., & Falapa, A. (2020). Design for regenerative systems: towards sustainable material cultures. Journal of Sustainable Design, 8(2), 33–49. https://doi.org/10.1016/jsd.2020.02.005
Calderón, T. A. V., Mora, M. M. C., Reyes, S. M. C., Pilay, Y. L. C., Jaramillo, M. L. C., & Wilson, J. M. G. (2024). Economía circular: estrategias para la sostenibilidad en la gestión de recursos. Ciencia y Desarrollo, 27(4), 579-590.
Corporación Nacional Forestal CONAF. (2022). Estrategia Nacional de Cambio Climático y Recursos Vegetacionales (ENCCRV). https://www.conaf.cl
Ellen MacArthur Foundation. (2021). Circular Economy in Cities: Building thriving and resilient communities. https://ellenmacarthurfoundation.org
Food and Agriculture Organization of the United Nations. (2021). Forest Products Annual Market Review 2020–2021. https://www.fao.org
Gustafsson, D. (2019). Analysing the Double diamond design process through research & implementation.
Instituto Forestal de Chile INFOR. (2022). Informe Anual del Sector Forestal Chileno 2022. https://wef.infor.cl
Karana, E., Barati, B., Rognoli, V., & Zeeuw Van Der Laan, A. (2015). Material driven design (MDD): A method to design for material experiences. International Journal of Design, 9(2), 35–54. https://www.ijdesign.org/index.php/IJDesign/article/view/1965?utm
Karana, E., Rognoli, V., & Zeeuw Van Der Laan, A. (2018). Material experiences: fundamentals of materials and design. Elsevier.
Kolb, D. A. (1984). Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall.
Micheloud, A. (s. f.). Cork | pine resin (low heat) Cor02 [Receta de material]. Materiom Commons. Recuperado el 23 de enero de 2026, de https://commons.materiom.org/materials-database/recipe/649c36218e0f06dcab0b7cf2
Ministerio del Medio Ambiente (MMA). (2023). Estrategia Nacional de Economía Circular para Chile. https://hojaderuta.sofofahub.cl
Organización de Naciones Unidas (ONU). (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible. Naciones Unidas. https://www.un.org/sustainabledevelopment/es/
Parisi, S., & Rognoli, V. (2020). Tangible narratives: materials and design for sustainability. Design Issues, 36(4), 45–56. https://doi.org/10.1162/desi_a_00609
Pieroni, M., McAloone, T. C., & Pigosso, D. C. (2019). Business model innovation for circular economy and sustainability: A review of approaches. Journal of Cleaner Production, 215, 198–216. https://doi.org/10.1016/j.jclepro.2019.01.036
Seguí, L., Medina, R., & Guerrero, H. (2018). Gestión de residuos y economía circular. EAE Business School. https://www.diarioabierto.es/wp-content/uploads/2018/09/Gestion_residuos_EAE.pdf
Schwarz, T. (s. f.). Sawdust | dextrin Saw05 [Receta de material]. Materiom Commons. Recuperado el 23 de enero de 2026, de https://commons.materiom.org/materials-database/recipe/649c36218e0f06dcab0b7d02
Weiss Münchmeyer, A. J., & Besoain Narvaez, M. J. (2022). Biomateriales basados en el territorio: Metodología para la creación de una paleta biomaterial situada. Base Diseño e Innovación, 7(7), 7¬–25. https://doi.org/10.52611/bdi.num7.2022.797
