Residuos electrónicos Los procesos de cafeterías de reparación como barreras para la reparación de dispositivos inteligentes

Contenido principal del artículo

Teresa Castle-Green
Neelima Sailaja

Resumen

Los residuos electrónicos son un peligro para la salud y el medio ambiente que afecta a muchas personas y ecosistemas de todo el mundo. Como el volumen de residuos electrónicos sigue aumentando, es imperativo abordar este problema. A esta situación contribuye el Internet de las Cosas (IoT), una industria en expansión que despliega innumerables dispositivos inteligentes en todo el mundo. Prolongar la vida útil de los dispositivos ya instalados mediante reparaciones puede ayudar a reducir el impacto de la IoT en el cambio climático. Un planteamiento de diseño e innovación sostenibles para abordar este creciente problema consiste en cuestionar las prácticas de diseño convencionales centradas en el consumo dando prioridad a la reparabilidad comunitaria en el diseño. Este artículo utiliza un enfoque etnográfico y utiliza entrevistas para explorar los retos de la reparación de dispositivos inteligentes en contextos de reparación comunitaria. Analizamos el impacto de enfoques rápidos fallidos y las suposiciones que tienen los reparadores sobre la reparabilidad de los dispositivos inteligentes. Nuestros hallazgos demuestran cómo los procesos de reparación que se llevan a cabo en los cafés de reparación hacen que se filtren los dispositivos inteligentes. Identificamos así las barreras que los diseñadores y organizadores de cafés de reparación deben enfrentar para incorporar con éxito la reparación de productos inteligentes en estos entornos. 

Detalles del artículo

Biografía del autor/a

Teresa Castle-Green, Horizon Digital Economy Hub University of Nottingham

Teresa Castle-Green es una investigadora interdisciplinar que trabaja para desentrañar las complejidades sociotécnicas del diseño y la reparación de la IoT. Actualmente forma parte del proyecto Fixing the Future del EPSRC, que trabaja con las comunidades de reparación del Reino Unido para investigar las formas en que los enfoques de HCI/HDI pueden apoyar la creciente cultura de la reparación basada en la comunidad. 

Neelima Sailaja, Horizon Digital Economy Hub - University of Nottingham

Neelima Sailaja (profesora asistente de transición en la Universidad de Nottingham) es una investigadora interdisciplinar que trabaja en el ámbito de los retos sociotécnicos del uso de la tecnología. Actualmente dirige el ala de HDI del proyecto EPSRC Fixing the Future (Reparando el Futuro), centrado en explorar los retos y las respuestas en torno a la reparación de las tecnologías inteligentes. Ha publicado más de 15 artículos revisados por expertos en los principales centros de HCI y ha dirigido talleres sobre las implicaciones sociotécnicas de la tecnología. 

Citas

Blumenthal, J., & Diamond, M. L. (2022). Sustainability of the internet of things requires understanding of mineral demands and supplies. Environmental Science & Technology, 56(14), 9835 - 9837. https://pubs.acs.org/doi/10.1021/acs.est.2c03124

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development. sage.

Castle-Green, T., Reeves, S., Fischer, J. E., & Koleva, B. (2023). Revisiting the Digital Plumber: Modifying the Installation Process of an Established Commercial IoT Alaram system. Computer Supported Cooperative Work (CSCW), 1-37. https://doi.org/10.1007/s10606-022-09455-2

Catulli, M. (2012). What uncertainty? Journal of Manufacturing Technology Management, 23 (6), 780 - 793. https://doi.org/10.1108/17410381211253335

Ceschin, F., & Gaziulusoy, I. (2016) Evolution of design for sustainability: From product design to design for system innovations and transitions. Design studies, 47, 118 - 163. https://doi.org/10.1016/j.destud.2016.09.002

Forti, V., Baldé, C. P., Kuehr, R., & Bel, G. (2020).The global e-waste monitor 2020. nited Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam, 120.

Garfinkel, H. (1967). Studies in ethnomethodology. Prentice-Hall.

Hansson, L. Å. E. J., Cerratto Pargman, T., & Pargman, D. S. (2021). A decade of sustainable HCI: Connecting SHCI to the sustainable development goals. Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 1–19. https://doi.org/10.1145/3411764.3445069

Heacock, M., Kelly, C. B., Asante, K. A., Birnbaum, L. S., Bergman, Å., Bruné, M. N., Buka, I., Carpenter, D. O., Chen, A., Huo, X., & others (2016). E-Waste and harm to vulnerable populations: a growing global problem. Environmental Health Perspectives, 124(5), 550–555. https://doi.org/10.1289/ehp.1509699

Joore, P., & Brezet, H. (2015). A Multilevel Design Model: The mutual relationship between product-service system development and societal change processes. Journal of Cleaner Production, 97, 92–105. https://doi.org/10.1016/j.jclepro.2014.06.043

Jung, J. Y., Steinberger, T., King, J. L., & Ackerman, M. S. (2021). Negotiating Repairedness: How Artifacts Under Repair Become Contingently Stabilized. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–29. https://doi.org/10.1145/3476069

Kundurpi, A., Westman, L., Luederitz, C., Burch, S., & Mercado, A. (2021). Navigating between adaptation and transformation: How intermediaries support businesses in sustainability transitions. Journal of Cleaner Production, 283, 125366.

Lee, B., Cooper, R., & Hands, D. (2018). Are Traditional NPD Processes Relevant to IoT Product and Service Development Activities? A Critical Examination. Design Research Society Conference 2018. Design Research Society, IRL, 2280-2293. https://doi.org/10.1016/j.jclepro.2020.125366

Lefebvre, M. (2019). To repair or not to repair: an investigation of the factors influencing prosumer repair propensity [Doctoral thesis, Loughborough University]. https://core.ac.uk/download/pdf/288351889.pdf

Makov, T., & Fitzpatrick, C. (2021). Is repairability enough? big data insights into smartphone obsolescence and consumer interest in repair. Journal of Cleaner Production, 313, 127561. https://doi.org/10.1016/j.jclepro.2021.127561

Moalem, R. M., & Mosgaard, M. A. (2021). A critical review of the role of repair cafés in a sustainable circular transition. Sustainability, 13(22), 12351. https://doi.org/10.3390/su132212351

Müller, R. M., & Thoring, K. (2012). Design thinking vs. lean startup: A comparison of two user-driven innovation strategies. Proceedings of the Design Management Institute 2012 International Research Conference, 151-161

Norman, D. A. (1999). Affordance, conventions, and design. Interactions, 6(3), 38–43. https://doi.org/10.1145/301153.301168

Portner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., Begum, R. A., Betts, R., Kerr, R. B., Biesbroek, R., & others. (2022). Climate change 2022: impacts, adaptation and vulnerability. IPCC. https://hal.science/hal-03774939

Rejeb, A., Suhaiza, Z., Rejeb, K., Seuring, S., & Treiblmaier, H. (2022). The Internet of Things and the circular economy: A systematic literature review and research agenda. Journal of Cleaner Production, 131439, 1–19. https://doi.org/10.1016/j.jclepro.2022.131439

Robinson, B. H. (2009). E-waste: an assessment of global production and environmental impacts. Science of the Total Environment, 408(2), 183–191. https://doi.org/10.1016/j.scitotenv.2009.09.044

Rosner, D. K. (2014). Making citizens, reassembling devices: On gender and the development of contemporary public sites of repair in Northern California. Public Culture, 26(1), 51–77. https://doi.org/10.1215/08992363-2346250

Rosner, D. K., & Ames, M. (2014). Designing for repair? Infrastructures and materialities of breakdown. Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, 319–331. https://doi.org/10.1145/2531602.2531692

Russell, J. D., Svensson-Hoglund, S., Richter, J. L., Dalhammar, C., & Milios, L. (2023). A matter of timing: System requirements for repair and their temporal dimensions. Journal of Industrial Ecology, 27(3), 845–855. https://doi.org/10.1111/jiec.13280

Schischke, K., Proske, M., Nissen, N. F., & Lang, K. (2016). Modular products: Smartphone design from a circular economy perspective. Electronics Goes Green 2012+ (EGG). 1 - 8. https://doi.org/10.1109/egg.2016.7829810

Shittu, O. S., Williams, I. D., & Shaw, P. J. (2021). Global E-waste management: Can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Management, 20, 549–563. https://doi.org/10.1016/j.wasman.2020.10.016

Singh, N., & Ogunseitan, O. A. (2022). Disentangling the worldwide web of e-waste and climate change co-benefits. Circular Economy, 1(2), 100011, 1–8. https://doi.org/10.1016/j.cec.2022.100011

Stuart, D., Petersen, B., & Gunderson, R. (2022). Shared pretenses for collective inaction: the economic growth imperative, COVID-19, and climate change. Globalizations, 19(3), 408–425. https://doi.org/10.1080/14747731.2021.1943897

Vailshery, L. (2023, July 27). IoT connected devices worldwide 2019-2030. Statista. Retrieved September 8, 2023, from https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

van der Velden, M. (2021). ‘Fixing the World One Thing at a Time’: Community repair and a sustainable circular economy. Journal of Cleaner Production, 304, 1-11. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127151

Yu, J., Williams, E., Ju, M., & Yang, Y. (2010). Forecasting global generation of obsolete personal computers. ACS Publications.