The emerging role of artificial intelligence in dermatology: Clinical applications and challenges, a bibliographic review of recent evidence

Authors

DOI:

https://doi.org/10.52611/confluencia.2026.1703

Keywords:

Artificial intelligence, Dermatology, Computer-assisted diagnosis, Image analysis

Abstract

Introduction: Dermatology is a field strongly grounded in the visual and dermatoscopic assessment of cutaneous lesions, where clinical experience and specialist judgment are essential for accurate decision-making. In recent years, artificial intelligence has emerged as a tool with high potential to support diagnosis, severity assessment, and longitudinal monitoring of skin diseases, making a systematic and updated analysis of its usefulness, scope, and real impact in dermatological practice necessary. Objective: To critically analyze the current role of artificial intelligence in dermatology, describing its main clinical applications, benefits, limitations, and challenges, with emphasis on image-based diagnosis, severity assessment, multimodal models, artificial intelligence-assisted dermatopathology, medical education, and equity in access to dermatologic care. Methodology: A narrative literature review was conducted using PubMed/MEDLINE, applying exclusively the MeSH terms “Artificial Intelligence” and “Dermatology.” A total of 132 articles were selected after applying inclusion and exclusion criteria and a screening process based on PRISMA recommendations. Discussion: Recent evidence shows that artificial intelligence can achieve highly accurate diagnostic performance, enhance objective severity assessment, and optimize the longitudinal monitoring of skin diseases. However, challenges remain related to bias, clinical validation, explainability, and professional adoption. Conclusion: AI does not replace expert clinical evaluation, but it may serve as a valuable complement when integrated responsibly, ethically, and in an appropriate clinical context.

Downloads

Download data is not yet available.

References

Behara K, Bhero E, Agee JT. AI in dermatology: a comprehensive review into skin cancer detection. PeerJ Comput Sci [Internet]. 2024 [citado el 1 de diciembre 2025];10:e2530. Disponible en: https://doi.org/10.7717/peerj-cs.2530

Duan L, Li T, Li B, Li X, Fu D, Yang X, et al. Application of large language models to natural language processing and image analysis tasks in dermatology: a systematic review. Intell Med [Internet]. 2025 [citado el 1 de diciembre 2025]. Disponible en: https://doi.org/10.1016/j.imed.2025.08.004

Yan S, Yu Z, Primiero C, Vico-Alonso C, Wang Z, Yang L, et al. A multimodal vision foundation model for clinical dermatology. Nat Med [Internet]. 2025 [citado el 1 de diciembre 2025];31:2691-2702. Disponible en: https://doi.org/10.1038/s41591-025-03747-y

Biswas S, Achar U, Hakim B, Achar A. Artificial intelligence in dermatology: a systematized review. Int J Dermatol Venereol [Internet]. 2025 [citado el 1 de diciembre 2025];8(1):33-9. Disponible en: https://doi.org/10.1097/JD9.0000000000000404

Joh HC, Kim MH, Ko JY, Kim JS, Jue MS. Evaluating the performance of ChatGPT in dermatology specialty certificate examination-style questions: A comparative analysis between English and Korean language settings. Indian J Dermatol. [citado el 1 de diciembre 2025];39:2121-8. Disponible en: https://doi.org/10.4103/ijd.ijd_1050_23

Seth D, Cheldize K, Brown D, Freeman EF. Global burden of skin disease: Inequities and innovations. Curr Dermatol Rep [Internet]. 2017 [citado el 1 de diciembre 2025];193:847-55. Disponible en: https://doi.org/10.1007/s13671-017-0192-7

Soe NN, Kusnandar II, Latt PM, Fairley CK, Chow EPF, Maatouk I, et al. Use of AI in Identification of Sexually Transmitted Infections and Anogenital Dermatoses: A Systematic Review and Meta-Analysis. JAMA Netw Open [Internet]. 2025 [citado el 1 de diciembre 2025];8(19):e2533512. Disponible en: https://doi.org/10.1001/jamanetworkopen.2025.33512

Ferrante di Ruffano L, Takwoingi Y, Dinnes J, Chuchu N, Bayliss SE, Davenport C, et al. Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults. Cochrane Database Syst Rev [Internet]. 2018 [citado el 1 de diciembre 2025];12(12):CD013186. Disponible en: https://doi.org/10.1002/14651858.CD013186

Cai ZR, Kim J, Rezaei SJ, Chen ML, Touma F, Zhu C, et al. Assessing the performance of artificial intelligence models in evaluating inflammatory skin disease severity: a systematic review and meta-analysis. Br J Dermatol [Internet]. 2025 [citado el 1 de diciembre 2025];193(5):847-55. Disponible en: https://doi.org/10.1093/bjd/ljaf250

Okata-Karigane U, Hirota M, Takahashi C, Miyagawa A, Ako R, Nakajima S, et al. AI-Based Objective Severity Assessment of Atopic Dermatitis Using Patient Photos in a Real-World Setting: A Digital Biomarker Approach. Allergy [Internet]. 2025 [citado el 1 de diciembre 2025];80(11):3185-9. Disponible en: https://doi.org/10.1111/all.16586

Chanda T, Haggenmueller S, Bucher TC, Holland-Letz T, Kittler H, Tschandl P, et al. Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study. Nat Commun [Internet]. 2025 [citado el 1 de diciembre 2025];16(1):4739. Disponible en: https://doi.org/10.1038/s41467-025-59532-5

Partridge B, Janda M, Gillespie N, Silva CV, Arnold C, Abbott L, et al. Attitudes Towards the Use of Artificial Intelligence in Dermatology: A Survey of Australian Dermatologists. Australas J Dermatol [Internet]. 2025 [citado el 1 de diciembre 2025];66(5):e279-e86. Disponible en: https://doi.org/10.1111/ajd.14524

Tran M, Schmidle P, Guo RR, Wagner SJ, Koch V, Lupperger V, et al. Generating dermatopathology reports from gigapixel whole slide images with HistoGPT. Nat Commun [Internet]. 2025 [citado el 1 de diciembre 2025];16(1):4886. Disponible en: https://doi.org/10.1038/s41467-025-60014-x

Pooth R, Sattler S, Westerberg F, Pavicic T, Kerscher M. Transforming Skin Quality Evaluation With AI: From Subjective Grading to Data-Driven Precision. J Cosmet Dermatol [Internet]. 2025 [citado el 1 de diciembre 2025];Suppl4:e70371. Disponible en: https://doi.org/10.1111/jocd.70371

Goldust M. AI-Powered Virtual Reality in Acne Vulgaris. J Cosmet Dermatol [Internet]. 2025 [citado el 1 de

diciembre 2025];24(3):e70104. Disponible en: https://doi.org/10.1111/jocd.70104

Haykal D. Keep an Eye on AI: How Artificial Intelligence Is Redefining Patient Education in Dermatology. J Cosmet Dermatol [Internet]. 2025 [citado el 1 de diciembre 2025];24(5):e70225. Disponible en: https://doi.org/10.1111/jocd.70225

Cosar Sogukkuyu DY, Ata O. Classification of melanonychia, Beau’s lines, and nail clubbing based on nail images and transfer learning techniques. PeerJ Comput Sci [Internet]. 2023 [citado el 1 de diciembre 2025];38(9):1732-9. Disponible en: https://doi.org/10.7717/peerj-cs.1533

Chan E, Ramsay K, Tyli R, Geng RSQ, Nasseri T, Piguet V, et al. Artificial intelligence–based alopecia assessment: A proof of concept for enhancing accuracy and objectivity in hair loss measurement. JAAD Case Rep [Internet]. 2025 [citado el 1 de diciembre 2025];91(2):365-73. Disponible en: https://doi.org/10.1016/j.jdcr.2025.09.023

Lee I. Artificial intelligence in Teledermatology. Dermatol Clin [Internet]. 2025 [citado el 1 de diciembre 2025];92(3):456-64. Disponible en: https://doi.org/10.1016/j.det.2025.05.005

Kabakova M, Joerg L, Jagdeo J. Advancing equity in generative AI dermatology requires representative data and transparent evaluation. J Eur Acad Dermatol Venereol [Internet]. 2025 [citado el 1 de diciembre 2025];39(12):e1067-e8 Disponible en: https://doi.org/10.1111/jdv.70052

Lee I. Artificial Intelligence in Teledermatology. Dermatol Clin [Internet]. 2025 [citado el 1 de diciembre 2025];43(4):553-61. Disponible en: https://doi.org/10.1016/j.det.2025.05.005

Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, et al. Human–computer collaboration for skin cancer recognition. Nat Med [Internet]. 2020 [citado el 1 de diciembre 2025];26:1229-34. Disponible en: https://doi.org/10.1038/s41591-020-0942-0

Luz F Silva D, Rubinho R, Denofre A, Avila S, Magalhães RF. Artificial intelligence on inflammatory dermatoses: where we are and where are we going? An Bras Dermatol [Internet]. 2025 [citado el 1 de diciembre 2025];100(5):501164. Disponible en: https://doi.org/10.1016/j.abd.2025.501164

Nadour N, Duguet T, Zahedi S, Figoni H, Liard R. Diagnostic accuracy of artificial intelligence compared to family physicians and dermatologists for skin conditions: a systematic review and meta-analysis. BMC Prim Care [Internet]. 2025 [citado el 1 de diciembre 2025];26(1):384. Disponible en: https://doi.org/10.1186/s12875-025-03073-9

Gordon ER, Trager MH, Kontos D, Weng C, Geskin LJ, Dugdale LS, Samie FH. Ethical considerations for artificial intelligence in dermatology: a scoping review. Br J Dermatol [Internet]. 2025 [citado el 1 de diciembre 2025];190(6):789-97. Disponible en: https://doi.org/10.1093/bjd/ljae040

Published

2026-02-19

How to Cite

1.
Saieg Viguera ME. The emerging role of artificial intelligence in dermatology: Clinical applications and challenges, a bibliographic review of recent evidence. Rev. Conflu [Internet]. 2026 Feb. 19 [cited 2026 Feb. 20];9. Available from: https://revistas.udd.cl/index.php/confluencia/article/view/1703

Issue

Section

Literature Review

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.